Traffic noise maps as an assistance for urban planning

Rudolf Liegl Moehler + Partner Consulting Engineers Munich, FRG

1. Introduction

Today's situation of urban living is characterized by traffic noise pollution of widespread areas. Although efforts have been made to reduce the noise emission especially of automobiles, the growing number of vehicles and covered distances have even intensified the problem.

Many residential areas are situated immediately beneath highly frequented roads, railway networks or airports, where esp. recreation, communication and sleep is seriously disturbed.

Particularly with regard to healthy living conditions urban planning has to consider the aspects of noise pollution control in order to avoid cost-intensive making up of noise barriers or soundproof windows.

This paper intends to present possibilities of noise prediction and visualisation along roads or railways and to propose guidelines for urban planning in noise-polluted areas. The actual road and railway noise maps of the city of Munich, FRG, are presented.

2. Noise prediction

Noise maps intend to describe either actual or future situations.

In principle, a description of actual situations can be derived from measurement results. Anyhow representative measurement results that are not falsified by accidental changes of traffic flow or weather can hardly be obtained reliable along main roads and railway lines. Therefore a comprehensive analysis of a city's traffic noise situation should usually not be based on measurement results.

Preferably noise situations are to be described by the results of acknowledged numerical procedures that calculate the noise-emission of traffic ways and allow the prediction of sound propagation towards critical localities.

The input values of those calculation procedures (for instance number of vehicles per hour / day, speed of vehicles, distance of critical localities referred to the noise source) are typically obtained more easily and reliable than measurement results.

283
Based on these input values the noise situation throughout a city's roads and railway lines can be obtained. Varying input data, for instance increasing traffic flows, can be flexibly taken into consideration. Future developments can be predicted.

In the Federal Republic of Germany the Traffic Noise Protection Order (16. BlmSchV) [1] describes procedures, that allow calculation of road and railroad emission data as well as noise immission levels. Results are given separately for day and night periods.

Table 1 shows a small cut of the data set of the road noise map of Munich [2] which was worked out by order of the administration of the city of Munich.

<table>
<thead>
<tr>
<th>Allacher Straße [84] name and signature of the street</th>
<th>9702 x1</th>
<th>13361 y1</th>
<th>9982 x2</th>
<th>133261 y2</th>
<th>Gauss-Krüger-coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicles per day</td>
<td>lorries per day</td>
<td>velocity in km/h</td>
<td>surface</td>
<td>classification</td>
<td>noise emission dB(A)</td>
</tr>
<tr>
<td>40000</td>
<td>3000</td>
<td>50</td>
<td>Asphaltbeton</td>
<td>Gemeindestraße</td>
<td>68.9</td>
</tr>
</tbody>
</table>

sound propagation

<table>
<thead>
<tr>
<th>direction</th>
<th>distance</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>links</td>
<td>18.0</td>
<td>9.0</td>
</tr>
<tr>
<td>rechts</td>
<td>18.0</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Table 1: Data set of the Munich road noise map (example)

The values in table 1 have been calculated in accordance with the instruction RLS-90 [3] which is part of the 16. BlmSchV.

The data set includes values for approximately 250 main roads of Munich with a traffic load of more than 5000 vehicles per day.

3. Visualisation of noise situations

An optimum survey of a city's traffic noise situation is given, if the results of the noise prediction procedure are plotted to a map of the city.

The following pictures 1 and 2 are presenting parts of the road and the railroad noise map [2,4] of the city of Munich. The full size maps cover the whole area of the city.

284
Picture 1: Noise situation along main roads

This map shows noise inmission levels for buildings next to the roads in classes of 5 dB(A), plotted as coloured stripes onto the corresponding main roads of the city map. With reference to the black/white picture above, areas of high noise levels are plotted darker than areas of lower noise pollution. Plotted stars indicate that no buildings exist beneath the road (therefore the emission noise level is plotted). All calculations have been done in accordance with the instruction RLS-90.

Figure 2: Noise situation along railway lines
This map presents noise levels in a distance of 25 m to the railway lines. The width of the stripes is a measure of the level's height. Next to the stripes the value of the noise level in dB(A) is plotted. All calculations have been done in accordance with the instruction Schall 03 [5] which is part of the 16. BlmSchV.

Both pictures are presenting the noise situation in the neighborhood of the traffic ways. The corresponding input data set is existing as electronic data bank, a fact that facilitates updating and plotting of data.

4. Planning guidelines

Based on traffic noise maps, areas of high noise pollution are identified by comprehensible criterions and adequate noise prevention is facilitated.

Furtheron urban planning may consider aspects of noise pollution in early stages. Possibilities to ensure healthy living conditions are given by
- erecting residential houses separated from areas of high traffic noise immission
- arranging buildings with lower noise protection demands (e.g. buildings of commercial enterprises) in front of residential areas
- arranging rooms with lower noise protection demands (e.g. bathrooms, stairwells) towards traffic noise sources and rooms with high recreation demand in quiet parts of a building.

5. Summary

Traffic noise maps facilitate comprehensible surveys of a cities noise situation. Noise levels should be calculated based on acknowledged numerical procedures to facilitate convenient updating of the input data set.

Based on traffic noise maps, adequate noise prevention can be done and urban planning is put in a situation to ensure healthy living conditions.

References